Making Computer And Electronic Recycling Easy  
 
Home Contact Recycle Services
 


About e-Waste

What is e-Waste? - e-Waste is a popular, informal name for electronic products nearing the end of their "useful life." Computers, televisions, VCRs, stereos, copiers, and fax machines are common electronic products. Many of these products can be reused, refurbished, or recycled. Unfortunately, electronic discards is one of the fastest growing segments of our nation's waste stream. In addition, some researchers estimate that nearly 75 percent of old electronics are in storage, in part because of the uncertainty of how to manage the materials. Combine this with increasing advances in technology and new products headed towards the market and it is no wonder that "e-Waste" is a popular topic.

Why Recycle? - Most electronic devices contain a variety of materials, including metals, that can be recovered for recycling. Recycling your waste electronics saves resources and protects the Earth because new metals don't have to be mined. In addition, some electronic products contain high enough levels of certain materials, such as lead, that render them hazardous waste when disposed. For instance, California law designates waste televisions and monitors as hazardous. Hazardous wastes cannot be disposed with municipal trash.

Beryllium - Beryllium and its salts are toxic substances and potentially carcinogenic. Chronic berylliosis is a pulmonary and systemic granulomatous disease caused by exposure to beryllium. Acute beryllium disease in the form of chemical pneumonitis was first reported in Europe in 1933 and in the United States in 1943. Cases of chronic berylliosis were first described in 1946 among workers in plants manufacturing fluorescent lamps in Massachusetts. Chronic berylliosis resembles sarcoidosis in many respects, and the differential diagnosis is often difficult. Although the use of beryllium compounds in fluorescent lighting tubes was discontinued in 1949, potential for exposure to beryllium exists in the nuclear and aerospace industries and in the refining of beryllium metal and melting of beryllium-containing alloys, the manufacturing of electronic devices, and the handling of other beryllium-containing material. Early researchers tasted beryllium and its various compounds for sweetness in order to verify its presence. Modern diagnostic equipment no longer necessitates this highly risky procedure and no attempt should be made to ingest this substance. Beryllium and its compounds should be handled with great care and special precautions must be taken when carrying out any activity which could result in the release of beryllium dust (lung cancer is a possible result of prolonged exposure to beryllium laden dust). This substance can be handled safely if certain procedures are followed. No attempt should be made to work with beryllium before familiarization with correct handling procedures. A successful test for beryllium on different surface areas has been recently developed. The procedure uses fluorescence when beryllium is bound to sulfonated hydroxybenzoquinoline to detect up to 10 times lower than the recommended limit for beryllium concentration in the work place. Fluorescence increases with increasing beryllium concentration. The new procedure has been successfully tested on a variety of surfaces. This kind of development will inevitably lead to a more efficient control of beryllium concentration in the work place.

Cadmium - Cadmium has no constructive purpose in the human body. This element and solutions of its compounds are extremely toxic even in low concentrations, and will bioaccumulate in organisms and ecosystems. One possible reason for its toxicity is that it interferes with the action of zinc-containing enzymes. Zinc is an important element in biological systems, but cadmium, although similar to zinc chemically in many ways, apparently does not substitute or "stand in" for it well at all. Cadmium may also interfere with biological processes containing magnesium and calcium in a similar fashion. Pathways of human contact include soil contamination from industrial releases or landfill and associated leachate processes. Inhaling cadmium laden dust quickly leads to respiratory tract and kidney problems which can be fatal (often from renal failure). Ingestion of any significant amount of cadmium causes immediate poisoning and damage to the liver and the kidneys. Compounds containing cadmium are also carcinogenic. Cadmium poisoning is the cause of the itai-itai disease, which literally means "pain pain" in Japanese. In addition to kidney damage, patients suffered from osteoporosis and osteomalacia. While working with cadmium it is important to do so under a fume hood to protect against dangerous fumes. Silver solder, for example, which contains cadmium, should be handled with care. Serious toxicity problems have resulted from long-term exposure to cadmium plating baths

Chromium - Chromium metal and chromium(III) compounds are not usually considered health hazards, but hexavalent chromium (chromium VI) compounds can be toxic if orally ingested or inhaled. The lethal dose of poisonous chromium (VI) compounds is about one half teaspoon of material. Most chromium (VI) compounds are irritating to eyes, skin and mucous membranes. Chronic exposure to chromium (VI) compounds can cause permanent eye injury, unless properly treated. Chromium(VI) is an established human carcinogen. Exposure to the poisonous chemical hexavalent chromium in drinking water formed the plot of the motion picture Erin Brockovich. World Health Organization recommended maximum allowable concentration in drinking water for chromium (VI) is 0.05 milligrams per liter. As chromium compounds were used in dyes and paints and the tanning of leather, these compounds are often found in soil and groundwater at abandoned industrial site, now needing environmental cleanup and remediation per the treatment of brownfield land. Primer paint containing hexavalent chromium is still widely used for aerospace and automobile refinishing applications.

Lead - Lead is a poisonous metal that can damage nervous connections (especially in young children) and cause blood and brain disorders. Long term exposure to lead or its salts (especially soluble salts or the strong oxidant PbO2) can cause nephropathy, and colic-like abdominal pains. The historical use of lead acetate (also known as sugar of lead) by the Roman Empire as a sweetener for wine is considered by some to be the cause of the dementia which affected many of the Roman Emperors. At one point in time, some lead compounds, because of their sweetness, were used by candy makers.

Mercury - Mercury readily combines with aluminium to form an amalgam when the two pure metals come into contact. However, when the amalgam is exposed to air, the aluminium oxidizes, leaving behind mercury. The oxide flakes away, exposing more mercury amalgam, which repeats the process. This process continues until the supply of amalgam is exhausted, and since it releases mercury, a small amount of mercury can “eat through” a large amount of aluminium over time, by progressively forming amalgam and relinquishing the aluminium as oxide. Aluminium in air is ordinarily protected by a molecule-thin layer of its own oxide (which is not porous to oxygen). Mercury coming into contact with this oxide does no harm. However, if any elemental aluminium is exposed (even by a recent scratch), the mercury may combine with it, starting the process described above, and potentially damaging a large part of the aluminium before it finally ends (Ornitz 1998). For this reason, restrictions are placed on the use and handling of mercury in proximity with aluminium. In particular, mercury is not allowed aboard aircraft under most circumstances because of the risk of it forming amalgam with exposed aluminium parts in the aircraft.

Nickel - Exposure to nickel metal and soluble compounds should not exceed 0.05 mg/cm³ in nickel equivalents per 40-hour work week. Nickel sulfide fume and dust is believed to be carcinogenic, and various other nickel compounds may be as well. Nickel carbonyl, [Ni(CO)4], is an extremely toxic gas. The toxicity of metal carbonyls is a function of both the toxicity of a metal as well as the carbonyl's ability to give off highly toxic carbon monoxide gas, and this one is no exception. It is explosive in air. Sensitised individuals may show an allergy to nickel affecting their skin. The amount of nickel which is allowed in products which come into contact with human skin is regulated by the European Union. In 2002 a report in the journal Nature researchers found amounts of nickel being emitted by 1 and 2 Euro coins far in excess of those standards. This is believed to be due to a galvanic reaction.

Zinc - Metallic zinc is not considered to be toxic, but free zinc ions in solution (like copper or iron ions) are highly toxic. There is also a condition called zinc shakes or zinc chills (see metal fume fever) that can be induced by the inhalation of freshly formed zinc oxide formed during the welding of galvanized materials. Excessive intake of zinc can promote deficiency in other dietary minerals.
Omni Tech
424-236-5012

| Home | Contact | Resources | About | Recycle | Services |
© 2006